Preliminaries

In \mathbb{C} , every open domain admits an analytic its boundary. In several variables, Hartogs' ior, however domains of holomorphy capture

 $D'D''r(a)(b,b) \ge 0$ for all $b \in$

If there is strict inequality for $b \neq 0$, the dor finite dimension, the latter are locally biholor

In the 1940s, Oka and Lelong characteriz convexity w. r. t. plurisubharmonic function $f: U \to [-\infty, \infty)$, s. t. for each $a \in U$ and b $f(a) \le \frac{1}{2\pi} \int_0^{2\pi} f(a) da$

If $f \in C^2(U, \mathbb{R})$, it is plurisubharmonic iff for and it is strictly plurisubharmonic if there is main U in \mathbb{C}^n with C^2 boundary is strictly particularly be function defining the boundary.

While an open domain is convex iff $-\log d_U$ doconvex iff $-\log d_U$ is plurisubharmonic. In finite dimension, pseudoconvexity is equivalent to the existence of a plurisubharmonic exhaustion function of the domain.

Novelties on strong pseudoconvexity

Theorem (O-C, '16). If U is an open domain in \mathbb{C}^n with C^2 boundary, U is strictly pseudoconvex iff there exist V a neighborhood of \overline{U} , $\rho \in C^2(V)$ a defining function

Strong pseudoconvexity in Banach spaces

	of \dot{c}
c function that cannot be extended across domains exhibit a break with this behav- re such commonality with one variable.	A g strie
U V V AP, the global property of being a domain	If g In t exis
tic/geometric terms by pseudoconvexity of the boundary, the Levi condition	cor ρ as
\mathbb{C}^n such that $D'r(a)b = 0.$ (1)	3
omain is called strictly pseudoconvex. In omorphic to strongly convex sets.	Eve doc mo
ized and extended pseudoconvexity as ctions: upper semicontinuous functions $b \in X$ with $a + \mathbb{D} \cdot b \subset U$,	cor To cor
$f(a+e^{i\theta}b)d\theta.$	The fori
r all $a \in U$ and $b \in X$, $D'D''f(a)(b,b) \ge 0$; s strict inequality for $b \ne 0$. In fact, a do- seudoconvex iff there is a strictly p. s. h.	For Jae pse <i>B_C</i>
U is a convex function, in turn U is pseu-	

∂U , and $\varphi \in C^{\infty}(U)$ strictly positive such that $\inf_{a \in U} \varphi(a) |\rho(a)| > 0$ and, $D'D''(-\log |\rho|)(a)(b,b) \ge \varphi(a) ||b||^2$ for all $a \in U$ and $b \in \mathbb{C}^n$.

generalization of strict p. s. h.: an upper semicontinuous $g: U \subset X \rightarrow [-\infty, \infty)$ is rictly plurisubharmonic on average if there exists $\varphi \in C^{\infty}(U)$ positive such that for $a \in U$ and $b \in \mathbb{C}^n$ of small norm (size depending on a),

$$\varphi(a) \|b\|^2 + g(a) \le \frac{1}{2\pi} \int_0^{2\pi} g(a) da$$

g is real-valued and we can find φ constant, g is uniformly plurisubharmonic.

turn, a connected domain U in \mathbb{C}^n is strictly pseudoconvex on average if there ists $\rho \neq -\infty$ strictly p. s. h. on average in a neighborhood V of \overline{U} such that $= \{z \in V : \rho(z) < 0\}$. If U connected is in a Banach space, it is strongly pseudonvex if it is so on average in each finite-dimensional subspace; and if there exists as before and uniformly plurisubharmonic, U is called uniformly pseudoconvex.

Examples and counterexamples

very open and convex domain is pseudoconvex, but not necessarily strongly pseuconvex; e. g. polydisks are convex though not strongly pseudoconvex. Furtherore, there is a pseudoconvex domain smoothly bounded, that is strongly pseudonvex except at one boundary point [Sibony, '87].

find examples of Banach spaces whose unit ball is strongly pseudoconvex, we nsidered a number of complex analogues of uniform convexity, until the one below. **neorem** (O-C, '14). If X is a 2-uniformly PL-convex Banach space then B_X is unirmly pseudoconvex.

or $p \in [1,2], B_{L_p(\Sigma,\Omega,\mu)}$ is 2-uniformly PL-convex [Davis, Garling, Tomczakegermann, '84]. Meanwhile, for $2 and <math>n \ge 2$, the ball of ℓ_p^n lacks strong eudoconvexity, and so do the balls of ℓ_p and L_p for p > 2. The same prop. fails for $\gamma(K)$, for K compact and Hausdorff with $|K| \ge 2$ (it contains the polydisk $B_{\ell_{\infty}^2}$).

AWM Research Symposium April 7-9, 2017 UCLA

(2)

 $(a+e^{i\theta}b)d\theta.$

(3)

